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ABSTRACT

Frequency domain properties of an image are used for pre-
cise detection of edge orientation in color and multi-spectral
imagery. The orientation estimation is established as a min-
imization problem, formulated as a tensor method, and sim-
plified by solving its dual in terms of spatial partial deriva-
tives of the image. First, spectral density distribution around
each pixel is obtained. The edge orientation is determined
by fitting a straight line to this distribution. A matching
error is devised intensor form, and minimized by rotat-
ing the frequency domain principal axes. The orientation
is computed from the spatial derivatives by transposing fre-
quency domain operations to the spatial domain. The esti-
mated edge orientations and magnitudes for different bands
are converted to vectors and summed in the vector domain.
A comparison of this method with the widely used estima-
tors shows that the adapted tensor method improves estima-
tion precision even in the presence of extreme noise.

1. INTRODUCTION

Despite the number of different approaches that have been
proposed for edge and line detection from color images, the
accurate estimation of the edge orientation has only been
marginally investigated [1], [2], [4]. Most methods con-
centrate only on the accurate localization of the edge and its
immunity to noise, but not the precise estimation of the edge
orientation. Accurate edge and line orientation is important
in cartographic applications, road extraction from aerial im-
agery, medical image processing, techniques for grouping
pixels into arcs, edge linking, fingerprint processing.

We present a method for fusing the outputs of color edge
orientation detectors as well as precise estimation of those
orientations as in Fig.1. Edge orientation of an image point
is computed by minimizing an error term that fits a straight
line to the Fourier transform within the local window due to
the fact that an edge has a line shaped frequency response.
Minimization process is represented as an eigenvalue prob-
lem which in turn becomes finding the diagonal matrix that
gives the slope of the line in the frequency domain. Using

the energy preserving identity of the Fourier transform, the
computation process is carried out to the spatial domain in
terms of smoothed derivatives of image.

For color and multi-spectral imagery, the estimates ob-
tained from different channels need to be blended. One can-
not directly sum up and average the orientation angles be-
cause of the ambiguity that exists at the limits of the angular
spectrum[0; �). For example, if two lines with orientation
angles� � � and� lie in similar directions, then their aver-
aged orientation angle is�2 , which is almost perpendicular
to both lines. An adequate conversion should not only con-
sider the circular property of orientation, but also the inverse
relationship between orthogonal outputs. To combine both
desired properties, we devised a vector domain operator.

In the next section, estimation of edge orientation for
a single channel is explained. Section III summaries fus-
ing estimated orientation values for different image chan-
nels into a single aggregated response.

2. FREQUENCY ANALYSIS: TENSOR METHOD

The Fourier transform of an ideally oriented edge is aÆ

function in the direction of the edge. It is promising to de-
termine local orientation in the Fourier domain, since all we
have to compute is the orientation of the line on which the
spectral densities are non-zero. With a window function, we
select a small local neighborhood from the image. Then,
we Fourier transform the windowed image. The smaller
the selected window, the more blurred the spectrum will be.
This means that even with ideal local orientation we will ob-
tain a rather band-shaped distribution of the spectral energy.
When fitting a straight line to the transform, we minimize
the sum of the squares of the distances to the line (Fig.2)

J =

Z 1

�1

jF (u)j2jg(u� �u)j2d2u: (1)

Here,u is a vector(u1; u2), F (u) is the Fourier transform,
g(u � �u) is the distance between a pointu and the line�u
that we want to fit. The distance can be inferred as

g = u� (uT �u): (2)



Fig. 1. Flow diagram.

The square of the distance is then given by

jgj2 = [u� (uT �u)]T [u� (uT �u)]

= uTu� (uT �u)2: (3)

Substituting this expression into error function we obtain

J = �uTJ �u; (4)

whereJ is a symmetric tensor [3] with the elements

Jii =
X
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In the matrix form we can rewrite

J(�u) =
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�u1 �u2

� �J11 J12
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� �
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�
(5)

The key to the solution lies in the fact that every symmetric
matrix reduces to a diagonal matrix by a suitable coordinate
transformation
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� �
�u01
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02
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In this way, the problem turns out to be an eigenvalue prob-
lem. However, it is easier to rotate the inertia tensor to the
principal axes coordinate system. The rotation angle� then
corresponds to the angle of the local orientation�
J1 0
0 J2

�
=

�
cos � sin �
� sin � cos �

� �
J11 J12
J21 J22

� �
cos � � sin �
sin � cos �

�

Using the trigonometric identities and comparing the matrix
coefficients on the left and right side of the equation, we
obtain three equations with three unknowns�, J1 andJ2:

J1 + J2 = J11 + J22;

J1 � J2 = (J11 � J22) cos 2� + J12 sin 2�;

(2(J22 � J11) sin 2�)�1 + J12 cos 2� = 0:

Fig. 2. Distanceg of a pointu in frequency space from the
line in the direction of�u.

From above we compute the orientation as

� =
1

2
tan�1

2J12
J11 � J22

(6)

The coefficients of the tensor can be computed easier in the
spatial domain by using the identity that the inner product
is preserved under Fourier transform. By using the partial
derivativesDx; Dy of the image, the elements of tensor is

Jij = W (Di �Dj); (7)

whereW is the smoothing mask.

3. VECTOR DOMAIN OPERATOR

The vector domain operator (VDO) is a mapping from1 1
2 -

D direction domain to 2-D vector domain in a way that per-
pendicular edge contrasts become reciprocal to each other.
Let’s first explain VDO for a set of directional filters. As an
edge orientation becomes more similar to the direction of
a filter, its response to the perpendicular filter should atten-
uate. If the filter directions are represented such that their
responses to perpendicular filters cancel, it is then possible
to fuse all the filter responses in order to generate a reliable
orientation estimate. We impose the circularity property by
extending the angular spectrum from[0; �) to [0; 2�) such
that the responses become

tn(�n) 7! ~tn(!n) = tne
j2�n (8)

where!n = 2�n, tn is the magnitude response for thenth

directional template. We subtract the responses of perpen-
dicular filter pairs while aggregating nonparallel responses
using vector addition.

~t =

N�1X
n=0

~tn(!n): (9)



The resulting phase is then converted back by halving. Al-
though this enables us to combine as many filters as possi-
ble, it should be noted that the directions of filters can not be
selected at random. LetT1, T2, T3, : : :, TN be filters hav-
ing the directions�1, �2, �3, : : :, �N , then without loss of
generality, let us assume the magnitude of their ideal edge
responses is equal to unity. Let the edge have an angle�,
and the response to each filter be

tn(�n) = cos(j�n � �j) = cos(�n � �): (10)

When this response is represented as a vector we get

~tn(�n) = cos(�n � �)ej�n

=
1

2
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�
: (11)

The summation of filter responses is then
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Here, the magnitude of the sum of the filter responses should
be independent from the edge orientation�, and it should
have the same phase as the edge orientation. This condition
is satisfied only when the second term cancels out, which
occurs when the summation of exponential terms is zero

N�1X
n=0

ej2�n =

N�1X
n=0

ej!n = 0 (13)

where!n=2�n. This is why the LVT representation must
double the orientation values. One solution to the above
equation is to assign filter orientations as�n = �

N
n which

yields a familiar expression
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�

N
n )
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N jk=1 = 0

) Æ[k]k=1 = 0: (14)

where0 � � < �. Therefore, if we sample the angular
spectrum[0; �) regularly, then the total response will be un-
biased and the resulting phase will be equal to the correct
orientation of the edge. Note that for multiples of the four,
another solution exists. If the first filter’s direction is� then

the second filter should be�2 +�, the third filter�2 ��, and
the fourth one� � � where� is in the range of[0; �2 ). This
filter set is comprised of reciprocal pairs in the vector do-
main with respect to the origin. For just two templates the
Eqn. 13 will have no solution because� cannot be equal to
both0 and�. Therefore, the VDO can only be used to fuse
the responses from 3 or more templates.

The VDO fuses the filter responses from color/multi-
spectral channels in a similar manner. LetM be the number
of the channels. If~tm;n is the VDO representation for the
nth filter response from themth channel, then the aggre-
gated response becomes

~tM;N =

MX
m=1

N�1X
n=0

~tm;n: (15)

We use the VDO to blend three estimates�̂red, �̂green, �̂blue.

4. RESULTS

The performance of the method is evaluated under ideal and
noisy conditions using synthetic and natural images. Fig.
3 shows the estimated orientations. The first column con-
sists of the original and corrupted input images that a zero-
mean Gaussian noisenr = �(2�)

�0:5
e�r

2

was added. The
second column presents the results of the Sobel operator,
which is widely accepted, adapted for color imagery. The
last column shows the results for the proposed method. The
adapted Sobel method is sensitive to noise (b2, b4), and
causes ripple-like patterns (b1, b3). The correct orientation
estimates should be smooth as in (c1, c3). Our method gives
more accurate results for noisy images as well (c2, c4).

The results prove the described method significantly im-
proves the edge orientation estimates of the color images
even when there is severe noise. Furthermore, fusing of the
estimates from different channels is made possible.
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Fig. 3. (a1, a3) Color input images, (a2,a4) noise added by� = 20. (b1, b2, b3, b4) are the best orientation estimates using
smoothed Sobel operator. (c1, c2, c3, c4) orientation estimates obtained with the described method. Here, red corresponds
orientation angle0Æ, yellow is45Æ, blue is90Æ, and green is135Æ.


